YOLO视觉检测应用标注篇(四)

YOLO数据集图像预处理

准备自定义数据集时,首先要准备图片。
但收集到的图片可能规格各种各样。
也可能数量并不够。
因此我们需要进行预处理。
下面分享一个使用opencv进行预处理的程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import cv2
import os
import numpy as np
from PIL import Image, ExifTags
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import random

class YOLOPreprocessor:
def __init__(self, config):
self.config = {
'target_size': 640,
'use_denoise': True,
'auto_denoise': True,
'use_histogram': True,
'color_enhance': True,
'exif_correction': True,
'data_augmentation': False,
'normalize': True,
'max_pixels': 3840*2160,
'save_quality': 95,
'num_workers': 4,
'seed': 42
}
self.config.update(config)
random.seed(self.config['seed'])
np.random.seed(self.config['seed'])

def _auto_denoise_check(self, gray_img):
"""自动判断是否需要去噪"""
var = cv2.Laplacian(gray_img, cv2.CV_64F).var()
return var < 50

def _exif_orientation(self, img):
"""处理EXIF方向信息"""
try:
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
exif = pil_img._getexif()
if not exif:
return img

orientation_key = [k for k, v in ExifTags.TAGS.items() if v == 'Orientation']
orientation = exif.get(orientation_key, 1)

if orientation == 3:
img = cv2.rotate(img, cv2.ROTATE_180)
elif orientation == 6:
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
elif orientation == 8:
img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
except Exception as e:
print(f"EXIF处理错误: {str(e)}")
return img

def _color_enhancement(self, img):
"""LAB颜色空间增强"""
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
l = clahe.apply(l)
return cv2.cvtColor(cv2.merge((l,a,b)), cv2.COLOR_LAB2RGB)

def _data_augmentation(self, img):
"""随机数据增强"""
# 随机水平翻转
if random.random() > 0.5:
img = cv2.flip(img, 1)

# 随机旋转 (-15°到15°)
angle = random.uniform(-15, 15)
h, w = img.shape[:2]
M = cv2.getRotationMatrix2D((w/2, h/2), angle, 1.0)
img = cv2.warpAffine(img, M, (w, h), borderMode=cv2.BORDER_REPLICATE)

# 随机亮度调整
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hsv[:,:,2] = hsv[:,:,2] * random.uniform(0.8, 1.2)
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)

return img

def preprocess(self, img_path):
"""预处理流水线"""
try:
# 读取图像
img = cv2.imread(img_path)
if img is None:
raise ValueError(f"无法读取图像: {img_path}")

# EXIF方向校正
if self.config['exif_correction']:
img = self._exif_orientation(img)

# 自动去噪判断
if self.config['auto_denoise']:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if self._auto_denoise_check(gray):
img = cv2.GaussianBlur(img, (3,3), 0)

# 手动去噪
elif self.config['use_denoise']:
img = cv2.GaussianBlur(img, (3,3), 0)

# 转换为RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 颜色增强
if self.config['color_enhance']:
img = self._color_enhancement(img)

# 直方图均衡化
if self.config['use_histogram']:
yuv = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
yuv[:,:,0] = clahe.apply(yuv[:,:,0])
img = cv2.cvtColor(yuv, cv2.COLOR_YUV2RGB)

# 数据增强
if self.config['data_augmentation']:
img = self._data_augmentation(img)

# 尺寸处理
h, w = img.shape[:2]

# 内存保护
if h * w > self.config['max_pixels']:
scale = (self.config['max_pixels'] / (h * w)) ** 0.5
h, w = int(h * scale), int(w * scale)
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA)

# 保持长宽比的缩放
target_size = self.config['target_size']
scale = min(target_size / h, target_size / w)
new_h, new_w = int(h * scale), int(w * scale)
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)

# 填充
padded = np.full((target_size, target_size, 3), 114, dtype=np.uint8)
padded[:new_h, :new_w] = img

# 归一化
if self.config['normalize']:
padded = padded.astype(np.float32) / 255.0

return padded
except Exception as e:
print(f"处理 {os.path.basename(img_path)} 时出错: {str(e)}")
return None

def process_folder(self, input_dir, output_dir, save_format='.jpg'):
"""批量处理文件夹"""
os.makedirs(output_dir, exist_ok=True)
files = [f for f in os.listdir(input_dir) if f.lower().endswith('.bmp')]

with ThreadPoolExecutor(max_workers=self.config['num_workers']) as executor:
futures = []
for filename in files:
in_path = os.path.join(input_dir, filename)
base_name = os.path.splitext(filename)[0]
out_filename = f"{base_name}{save_format}"
out_path = os.path.join(output_dir, out_filename)
futures.append(executor.submit(self._process_single, in_path, out_path))

for future in tqdm(futures, total=len(files), desc="处理进度"):
future.result()

def _process_single(self, in_path, out_path):
processed = self.preprocess(in_path)
if processed is not None:
if self.config['normalize']:
save_img = (processed * 255).astype(np.uint8)
else:
save_img = processed

save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)

if out_path.lower().endswith('.jpg'):
cv2.imwrite(out_path, save_img, [int(cv2.IMWRITE_JPEG_QUALITY), self.config['save_quality']])
else:
cv2.imwrite(out_path, save_img)


if __name__ == "__main__":
# 配置参数(可根据需要修改)
config = {
'target_size': 640,
'use_denoise': True, # 手动去噪判断
'auto_denoise': True, # 自动去噪判断
'use_histogram': False, # 直方图均衡化
'color_enhance': False, # 颜色增强
'exif_correction': False, # EXIF方向校正
'data_augmentation': False, # 启用数据增强
'normalize': True, # 保存时需要归一化
'num_workers': 2, # 根据CPU核心数调整
'save_quality': 95 # JPEG质量
}

# 初始化预处理器
preprocessor = YOLOPreprocessor(config)

# 执行处理
preprocessor.process_folder(
input_dir=r'path\to\pic', # 输入文件夹路径
output_dir=r'path\to\output', # 输出文件夹路径
save_format='.jpg' # 或 '.bmp'
)

YOLO视觉检测应用标注篇(四)
http://kevin.zone.id/2025/04/19/opencv/
作者
Kevin
发布于
2025年4月19日
许可协议